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Abstract 
The general solution of the  mass  zero scalar field coupled to the  gravitational field with 
the assumpt ion  of  plane symmet ry  is exhibi ted and partially interpreted.  Energy transfer  
f rom a gravitational wave to test  particles is s tudied invariantly. 

1. Introduction 

It is well known that a spherically symmetric vacuum gravitational field 
is static. Therefore the radiation problem is trivial. However, Brans-Dicke 
theory does seem to admit time-dependent, spherically symmetric solutions. 
We would, therefore, be able to study the radiation problem in this model in 
detail. 

It is unfortunate that the field equations do not seem to admit an explicit 
analytic solution. It turns out that plane symmetry simplifies one field 
equation in an essential manner so as to allow an explicit general solution. 
These solutions are not asymptotically flat and are therefore difficult to inter- 
pret. The interpretation problem has not been solved in general. 

We remind the reader that Brans-Dicke theory is conformally equivalent 
to that of mass zero scalar field. The exact mathematical formulae are given 
by Dicke (1962). 

2. Solution 

The Einstein field equations are given by 

Gu~ = --Kr.v (2.t)  

where • = 87rGo/c 4, and Go is Newton's gravitational constant. For mass zero 
scalar fields 
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r ~  = ~ , ~ , ~  - ~ , ~ , a  

cJ~ = 0 (2.2) 

From equations (2.1) and (2.2) it follows that 

Ruv = --K~,U~d,v (2.3) 

where Ruv is the Ricci tensor. 
Corresponding to each solution guy, ~ there is a solution guy, e~ of Brans- 

Dicke defined by 

1 
guy = ~ g#v 

~b = ei~ x /~V~ + ~ (2.4) 

It is convenient to define o = iN/~: ft. Equation (2.3) then reads 

Rug = o,ua,v (2.5) 

This is the set of  equations we shall solve for plane symmetry, 
We now adopt the definition and coordinates given by Taub (1956) for 

this particular symmetry. 
The line element can be written in the form 

( d s )  2 = eW(t,3)(dt z - d z  2) - eV(t ,3)(dx 2 + d y  2) (2.6) 

where X and Y at fixed t and z describe the planes of symmetry. 
We consider it slightly more convenient to work with characteristic 

coordinates defined by 

b l = t - - Z  

v = t + z  

x andy  remain the same. So the line element is transformed into 

(ds) 2 = eC°(u'v)du dv - e"(U'O)(dx 2 + dy 2) (2,7) 

For consistency we assume a to be a function of u and v only. 
The field equation given by (2.5) are 

0+2 = g + +  + ½g+2 _ g+co+ 

0 -  2 = u - -  + ½g_2 _ I t _ u _  (2 .8)  

a+o_ = It+_ + ½it+t- + co+_ (2.9) 
o = (e")+_ (2.1 o)  

o+_ = - ½ ( o + u _  + o_  g+) (2 .11)  

where a+ stands for Oa/Ou and o_ for 3a/3v. Equation (2.9) is a consequence 
of the remaining four equations if o is not a constant. 

For spherical symmetry in similar coordinates all field equations are the 
same except (2.10) which changes into 

- ½  e ~ = ( e ' ) + _  
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This coupling of / l  and c~ complicates the problem very much. 
It follows from (2.10) that 

eU = f(u) + g(v) (2.12) 

where f and g are arbitrary functions of  one variable. Now we see that 
equation (2.11) is invariant under any transformation ff = if(u) and ff = if(v), 
therefore we can write 

32a _ 1 [Oa3/~ +3a3/ . t ]  

~f Og 2 ~f ~g 3g Of] 

so we have 

3f3g 2 f +g [ 3f ~g 

We define p = ½(f + g) and r = ½(g - f )  to get 

3 2 0  " 3 2 0  1 0o 
- - =  a r 
3,T 2 ap 2 p (tO 

This is nothing but the two-dimensional "spherically symmetric" wave 
equation. Its general solution is 

(2.13) 

F( +p coshX)dX + ; a( -p coshX)dX 
0 0 

where F and G are arbitrary functions of one variable. A simple way to get 
this result is to Fourier analyse o in the variable T and use appropriate integral 
representations of Hankel functions of  the first and second kinds-~ 

The next step is to calculate co from equations (2.8). A simple way is to 
make the coordinate transformation defined by ff = f(u) and ,7 = g(v) as an 
auxiliary step. 

The result is 

e u = f(u) + g(v) 

=a  x / ( f + g ) e X p  - ( f + g )  --~-+du +--~-_dv (2.14) 

o = f F(g - f +  (f+g) cosh X) dX + G(g - f -  (f+g) cosh X) dX 
0 0 

where a is an arbitrary constant, f and g just account for necessary coordinate 
arbitrariness. Physical situations are governed by F and G. 

t This result is probably well known. Hints can be found in the book by E. C. Titch- 
marsh, Introduction to the Theory of Fourier Integrals. 
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We conclude from here that any solution of  the mass zero scalar field in 
general relativity can be generated from a solution of  the linear equation 
(2.13) and the expressions (2.12), (2. t4)  for e u and e ~°. e ~° is not  defined 
when g(v) is a constant. 

The following trick can be used to get a solution for this case; consider 
g(v) = Xv and a = or/X, then 

e ~ ° = o t ~ - - ~ e x p -  y--~+ du (2.15) 

after the limit X ~ 0 is taken. We observe that in this case o(u) is an arbitrary 
function, and o~ any constant. This constant can be incorporated into the 
indefinite integral. The next section will be dedicated to the interpretation 
of  this special solution. 

3. Interpretation 

We shall be concerned about the physical interpretation o f  the space-time 
defined by 

ds2 = °t eu/z dla u exp ( f aul au av - e"(U (dx2 + .+ / (3.1) 

which we have shown to be a solution o f  equation (2.5). a = a(u) is an arbitrary 
function o f  u. We observe that besides the plane symmetry killing vectors, 
there is another light-like motion given by 3/3v; this means we have a rigid 
wave traveling at the speed of  light. We can form a wave packet by assuming 
that the first and second derivates o f  o(u) vanish outside some finite closed 
interval of  u values. The actual value of  e is not  important because only 
aa/bu appears in the line element. 

It is interesting and perhaps surprising that space-time is fiat for regions 
where aa/Ou = 0. This can be seen from the Riemann tensor given by 

(~uu) 2 [(~uKv ~vgu)(~aKr ~go)  + (*TuKv rlvK u) Rt~vo r = _2e  -2~ - _ _ 

x (rl~K r - r/rKa) ] (3.2) 

e~ = eV, l.7 " d__#_# exp - f 0.+2 du 
du J It+ 

where K u= 6_  ~ is the lightlike Killing vector. ~u and r? v are the normalised 
Killing vectors corresponding to x and y translations. 
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We also exhibit this result directly by a coordinate transformation defined 
by 

e~ = t/2 

t i = u  

= 2e-(l /2)fu~+'au v + u(x  2 +y2) 

x = u x  

y=uy 

to get the following line element 

1 
(as )  2 = d a  d ~ -  d ~  ~ - d 2  ~ - ~ ~au ] ( ~  - ~2  _ j72) d ~  

From here we see that i f d a / d u  = 0 for some region the region is flat. 
Now we turn to the geodesic deviation formula to see how the scalar wave 

interacts with test particles. Let t u be the unit tangent of the worldline for an 
observer and co u the space-like infinitesimal connecting vector, so we have 

D2wU 
D S  2 = RUuortV f f  ~o a 

Using expression (3.2) we get 

D z w  u l {do]  2 
D S  2 = - -2 kds]  [(~u(~. co) + ~ ( f / .  co)] (3.3) 

where 

~ . t  
~ = ~ - ~ / ;  n~ 

~7. t 

do  
as  = t~ ~,u (3.4) 

^ 

~u and ~u are unit vectors orthogonat to t u and among themselves. We can 
think of them as defining the instantaneous plane of symmetry seen by the 
observer tu .  This is consistent because K u is also a Killing vector and therefore 
any linear combination ~ u  + t3~u + 7Ku  is a motion for ~, t3 and 7 constants. 

Now we notice that the covariant derivative of  ~u and ~u along the observer 
worldline vanishes. This fact is essential if ~u and ~u are to be considered 
space-like unit vectors defining a local reference frame for the observer. To 
prove this statement it is convenient to use the following relations 
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K•;v = 0 

~(x) = e-~° dlx (~(X)K v _ ~(X)Ku ) 
lz  ; v 

(y) e_~O d/x (•uCV)Kv ~.. = ~ - ~y~K.) ( 3 .5 )  

where ~(x) and ~ )  are the Killing vectors alax and alay respectively. 
Multiplying (3.3) by ~ and f/u we obtain 

d2eo.{+ 1 (do't 2 
d '  ~ -i-t~ ] oo.,~=o 

i oy 
d2a'.D + ½ 2 c~.D=0 

dZa) . 
ds 2 - 0 

where ~u is a space like unit vector orthogonal to t u, ~u and/#. 
So if r is the infinitesimal position vector of a neighboring particle the 

observer sees an effective time.dependent potential acting on this particle 
given by 

V(r) = ~-- (K x r) 2 

where m is the mass of the test particle and/£ a unit vector along the direction 
of incidence. 

An entirely similar calculation gives us the effective potential for Brans- 
Dicke theory. The only difference is that particles travel along geodesics of a 
metric conformatly related to (3.1); the conformal factor is given by (2.4). 
We just quote the result; 

V m [ 2 ° ° + 4 [ d e t 2  1 d 2 a ]  ^ 
(0 =-~ [T~-g-5 k~l - ~ j J (  K×O~ 

a is related to Brans-Dicke scalar field by 

It is interesting that the force may become repulsive. 
We shall consider now the following physical situation: two test particles 

initially at rest acquire a relative velocity after the wave packet passes by 
them. What is the final relative velocity? 

This question has a definite meaning only because the particles find them- 
selves initially and finally in a flat space-time. 
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We shall study this problem for a slightly more general space time defined 
by 

ds 2 = e~(U)du dv - e~(U)(dx 2 + dy 2) 

where co(u) and/2(u) are not related. 
An obvious coordinate transformation allows us to write this line element 

as  

ds 2 = e~(U)dt a dv - eU(dx 2 + dy 2) (3.6) 

and therefore makes the writing a little shorter. 
The geodesics are given by 

d__~ = A e - ~  
ds 

dv 1 1 
- = - + - e - " ( a ~  + a ~  2)  
ds A A 

dx 
ds = axe-U 

dy 
ds aye-U (3.7) 

where A ,  ax and ay are constants defining the initial unit tangent. 
We shall also need the law of parallel transport from event (u, 0, 0, 0) to 

event (u, v, x , y ) .  The actual path is immaterial because the transport is to be 
carried out in flat space time only. We chose the path (u, 0, 0, 0) -+ (u, v, 0, 0) 
-~ (u, v, x, 0) ~ (u, v, x, y) along Killing directions. The law of parallel trans- 
port is given by 

t + = t o  + 

~ - =  t o -  - eU-W(~6Cx + ~oYY) + ¼eU-'~o+(X ~ + y2) 

~ = t #  - ½ ~ o + x  

~Y = ~o y - ½~o+y (3.8) 

where ~o u is the vector at (u, 0, 0, 0) and 8u is the parallel transport of ~o u. 
Without loss of generality we assume the wave packet to be located within 

0 ~</a ~< fi, and oo(0) = 0. From (3.8) we conclude that if the wordline of 
particte 1 is defined by (A, ax, ay) and hits event (u, 0, 0, 0) then particle's 
2 worldline initially at rest with respect to 1, is defined by (A, ax - ½Ax, 
ay -- l A y )  and hits (u, v, x, y). 

From now on it is a matter of simple computation to get the final relative 
velocity. 

The result is: 

1 d 2 

~1 - vR ~/~- + ~ s 2 
0 0 
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where s is the proper time for the wave to pass by the particles (same for both). 
d is defined as follows: ~u and/?u defined by (3.4) generates a plane of symmetry 
(wave front) for observer t ~. For the initial portion of space time we define a 
parallel vector field t~(x) by transporting t u at (u, 0, 0, 0) all over it. Using 
(3.5) we get 

~;~ = ~;~ = 0 

Now we define a unit vector field 5U(x) to be orthogonal to t u, ~ and ,?u. 
Obviously ~u;v = 0 too. These vectors define a Lorentz frame over the initial 
flat space time. d is the projection of the three vector joining particles 1 and 
2 upon the plane of symmetry. This result applied to the mass zero scalar 
field gives 

1 

ld"] o 
~/(1 VR2/C 2 ) + 8 ~ lexp[!  f e x p  [2] exp kdp] J 

x ~ exp - dp2 

o 

For Brans-Dicke field we get 

= - e x p  )to 1 + 1 d 2 exp exp dp + 
x / ( I  _ V R V c 2  ) 1 a s  2 

"o 

exp o [dP)  dP f e x p [ - 2 ] d p e X P o  ~ d \dp/  J J  

where o(0) = O, 0(9) = 6 and ~, = - (1 /~ / (w  + })). 
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